If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-43x=0
a = 18; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·18·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*18}=\frac{86}{36} =2+7/18 $
| 18x^2–43x=0 | | y2−6=5y= | | w^2–34w=0 | | b.b/3=9 | | z.3z=18 | | 7=—10s—3 | | 32x^2–21x=0 | | -3-h=21 | | -4+a=8* | | )x+20)+x=180 | | 4a+1.25=8.25 | | —2y+6=—12 | | -18=y-3 | | 1/2(c+5)-10=–4 | | 9x2–5x–4=0 | | 300-25x=150 | | (4)^(x-2)=1/16 | | 8^x-2=26 | | 4x-9+5x/6=3 | | −12.7=y−3.4y= | | 6m=90. | | x+x/1.2+x/1.44=4550 | | 5z+z+90=180 | | -12-5y=3 | | 36−4x^2=0 | | 980=(x+14)17 | | r/36=27/39 | | -2=g+(-9 | | -3-4h=21 | | 1=2g−1 | | 3x+8=2x–6 | | -2x+8=-17x+14 |